Sleep, Fatigue, and Performance

Gregory Belenky, M.D.
Sleep and Performance Research Center
Washington State University Spokane
The Earth at Night: The Problem of 24/7 Operations

Sleep and Performance Research Center
Washington State University Spokane
The 24-Hour Sleep/Wake Cycle

- 0000: Slow Wave
- 0600: REM
- 1200: Waking
Sleep-Related Factors Affecting Performance

• Time awake (sleep/wake history)
• Time of day (circadian rhythm)
• Time on task (~shift length; % of shift spent on task)
• Sleep inertia
• Individual differences in response to
 – Time awake
 – Time of day
 – Time on task
 – Sleep inertia
• Adaptation to restricted sleep
Components of Fatigue

Time Awake, Time of Day, Time on Task

PVT Speed (1/RT)

Clock Time

Sleep Deprivation - Day 1
Sleep Deprivation - Day 2

Adapted from Wesensten et al., 2004
Consequences of Sleep Restriction and Sleep Deprivation

• Short term
 – Minutes, hours
 – Error, accident, catastrophe

• Mid-term
 – Weeks, months, years
 – Bad planning, inadequate strategizing, poor life decisions

• Long-term
 – Years
 – Overweight/obesity, Type II Diabetes, Sleep Disorder Breathing, Metabolic Syndrome, etc.

• Fatigue and Health-Related Risk Management
Fatigue Risk Management
(adapted from Dawson and McCulloch, 2005)

- Three-tiered defense-in-depth to prevent fatigue related errors, incidents, and accidents
- Tier 1 – Does system of shift timing and duration allow for adequate opportunity for sleep?
 - Computer-based rostering
 - Predictive Modeling
- Tier 2 – Do employees take advantage of the sleep opportunity?
 - Self-report
 - Wrist-worn actigraph (sleep watch)
- Tier 3 – In the workplace, do they maintain adequate alertness and performance?
 - Self-report & co-worker report
 - Palm Pilot Psychomotor Vigilance Task (PVT)
 - Embedded performance metrics
Tools for Field Studies

- Sleep watch actigraph to objectively measure total sleep time
- Palm OS – base Psychomotor Vigilance Task (PVT) to objectively measure total sleep time

Sleep and Performance Research Center
Objective Measurement of Sleep and Prediction of Performance

The Sleep Watch Actigraph and Integration with Mathematical Modelling
Actigraphy and Sleep Scoring

Nocturnal Awakening

File: GB1.amr(ZCM)
Scale: 456
Algorithm: Cole-Kripke (rescore)

Nap
Performance Prediction

Nocturnal Awakening

Nap

Sleep and Performance Research Center
Psychomotor Vigilance Task and Embedded Metrics
Sleep Restriction and Performance: A Sleep Dose/Response Study

8 hrs in bed
3, 5, 7, 9 hrs in bed
8 hrs in bed

Adaptation Phase
Experimental Phase
Recovery Phase
Release from study

Sleep and Performance Research Center
Washington State University Spokane
Driving Simulator
Driving Simulator – RMS Lane Deviation: An Embedded Performance Metric

Sleep and Performance Research Center
Washington State University
The Harvard Intervention Study

Effect of Shift Timing and Duration on Sleep and Superimposed and Embedded Performance Metrics

A Case Example of Fatigue Risk Management
Traditional vs. Intervention Schedule

Sleep and Performance Research Center
Washington State University Spokane
Duration of Work

Duration of Sleep

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours/Week</td>
<td>45.9 +/- 5.9</td>
<td>51.7 +/- 6.0</td>
</tr>
<tr>
<td>Hours/Day</td>
<td>6.6 +/- 0.8</td>
<td>7.4 +/- 0.9</td>
</tr>
</tbody>
</table>

Limiting Work Hours: Attentional Failures

Limiting Work Hours: Effect on Serious Medical Errors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Traditional Schedule</th>
<th>Intervention Schedule</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious medical errors made by interns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious medical errors</td>
<td>176 (136.0)</td>
<td>91 (100.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Preventable adverse events</td>
<td>27 (20.9)</td>
<td>15 (16.5)</td>
<td>0.21</td>
</tr>
<tr>
<td>Intercepted serious errors</td>
<td>91 (70.3)</td>
<td>50 (55.0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Nonintercepted serious errors</td>
<td>58 (44.8)</td>
<td>26 (28.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Types of serious medical errors made by interns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication</td>
<td>129 (99.7)</td>
<td>75 (82.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Procedural</td>
<td>11 (8.5)</td>
<td>6 (6.6)</td>
<td>0.34</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>24 (18.6)</td>
<td>3 (3.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Other</td>
<td>12 (9.3)</td>
<td>7 (7.7)</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Gregory Belenky, MD
Research Professor and Director
Sleep and Performance Research Center
Washington State University
P.O. Box 1495
Spokane, WA 99210-1495

Phone: (509) 358-7738
FAX: (509) 358-7627
Email: belenky@wsu.edu